Recombinant laccase from Pediococcus acidilactici CECT 5930 with ability to degrade tyramine
نویسندگان
چکیده
Biogenic amines degradation by bacterial laccases is little known, so we have cloned and heterologously expressed, in E. coli, a new laccase from Pediococcus acidilactici CECT 5930 (Lpa5930), a lactic acid bacterium commonly found in foods able to degrade tyramine. The recombinant enzyme has been characterized by physical and biochemical assays. Here we report the optimization of expression and purification procedures of this laccase. DNA encoding sequence of laccase from P. acidilactici was amplified by PCR and cloned into the expression plasmid pET28a for induction by isopropyl-β-D-thiogalactoipyranoside. Protein expression was performed in E. coli BL21(DE3) harboring pGro7 plasmid expressing a chaperone folding assistant induced by arabinose. Purification was performed by column metal-chelating chromatography on Ni-NTA-agarose. The laccase enzyme obtained has an apparent molecular mass of ∼60 kDa, an optimum temperature activity toward 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) of 28°C, and was quickly inactivated at temperatures higher than 70°C. The apparent Km value for ABTS was 1.7 mM and the Vmax obtained was 24 U/mg. In addition to ABTS, recombinant Lpa5930 laccase degraded the biogenic amine tyramine at pH 9.5 and pH 4.0 with or without ABTS as a mediator. Tyramine degradation by laccases could solve the problems generated in food due to the presence of this toxic compound.
منابع مشابه
Catabolism of serine by Pediococcus acidilactici and Pediococcus pentosaceus.
The ability to produce diacetyl from pyruvate and l-serine was studied in various strains of Pediococcus pentosaceus and Pediococcus acidilactici isolated from cheese. After being incubated on both substrates, only P. pentosaceus produced significant amounts of diacetyl. This property correlated with measurable serine dehydratase activity in cell extracts. A gene encoding the serine dehydratase...
متن کاملEnhancing the Laccase Production and Laccase Gene Expression in the White-Rot Fungus Trametes velutina 5930 with Great Potential for Biotechnological Applications by Different Metal Ions and Aromatic Compounds
Laccase is useful for various biotechnological and industrial applications. The white-rot fungus Trametes velutina 5930 and its laccase, isolated from the Shennongjia Nature Reserve in China by our laboratory, has great potential for practical application in environmental biotechnology. However, the original level of laccase produced by Trametes velutina 5930 was relatively low in the absence o...
متن کاملPlasmid-Associated Bacteriocin Production and Sucrose Fermentation in Pediococcus acidilactici.
Production of bacteriocin activity designated pediocin PA-1 was associated with the presence of a 6.2-megadalton plasmid in Pediococcus acidilactici PAC1.0. The bacteriocin exhibited activity against P. acidilactici, P. pentosaceus, Lactobacillus plantarum, L. casei, L. bifermentans, and Leuconostoc mesenteroides subsp. dextranicum. Partial characterization of pediocin PA-1 is described. The mo...
متن کاملLaccase SilA from Streptomyces ipomoeae CECT 3341, a key enzyme for the degradation of lignin from agricultural residues?
The role of laccase SilA produced by Streptomyces ipomoeae CECT 3341 in lignocellulose degradation was investigated. A comparison of the properties and activities of a laccase-negative mutant strain (SilA-) with that of the wild-type was studied in terms of their ability to degrade lignin from grass lignocellulose. The yields of solubilized lignin (acid precipitable polymeric lignin, APPL) obta...
متن کاملPotential of wine-associated lactic acid bacteria to degrade biogenic amines.
Some lactic acid bacteria (LAB) isolated from fermented foods have been proven to degrade biogenic amines through the production of amine oxidase enzymes. Since little is known about this in relation to wine micro-organisms, this work examined the ability of LAB strains (n=85) isolated from wines and other related enological sources, as well as commercial malolactic starter cultures (n=3) and t...
متن کامل